INDIAN SCHOOL MUSCAT

FIRST TERM EXAMINATION

SEPTEMBER 2018

CLASS XI

Marking Scheme – PHYSICS [THEORY]

SET - B

Q.NO.	Answers	Marks
	SECTION-A	
1.	$F_G: F_W: F_E: F_S = 1:10^{25}:10^{36}:10^{38}$	1
2.	Definition instantaneous velocity	1
3.	Definition of angle of friction	1
4.	$r = 1.496 \times 10^{11} / 3.08 \times 10^{16} = 4.86 \times 10^{-6} \text{ parsec}$	1
5.	No, two vectors can be combined to give zero resultant only if they have equal magnitude but in opposite directions	1/2 , 1/2
	SECTION-B	
6.	Four advantages of SI system over other systems	4 x ½
7.	Statement and verification of commutative law of vector addition Statement Vector diagram Verification	1/2 1/2 1
8.	Position –time graphs for relative velocity (i) zero (ii) positive	1,1
9.	(i) Definition of impulse (ii) Explanation- why a cricketer moves his hands backwards while holding a catch. OR	1 1
	(i) Definition of coefficient of kinetic friction.(ii) Explanation- proper inflation of tyres of vehicles	1 1
10.	Prove $R_{max} = 4 H_{max}$ For $\theta = 45^0$ Remaining proof	1/2 1 1/2
11.	(i) Velocity-time graph for an object thrown vertically upwards returning to the point of projection.	1

	(ii) No, as time increases distance also increases	
12.	(i)Why a gun recoils back when it is being fired? Explanation on the basis of action and reaction or by law of conservation of linear momentum (ii) Why a passenger falls forward when a moving bus suddenly stops? Explanation on the basis of inertia of motion	1/2 ,1/2
	SECTION-C	
13.	$T = K p^{a} d^{b} E^{c}$ $M^{0} L^{0} T = (M L^{-1} T^{-2})^{a} (ML^{-3})^{b} (ML^{2} T^{-2})^{c}$ $M^{0} L^{0} T = M^{a+b+c} L^{-a-3b+2c} T^{-2a-2c}$ $a+b+c=0(1)$ $-a-3b+2c=0(2)$ $-2a-2c=1(3)$ $a=5/6, b=\frac{1}{2}, c=1/3$ $T=d^{1/2}. E^{1/3}/p^{5/6}$	1 11/2 1/2
14.	Velocity – time graph Body is moving with uniform acceleration. Derivation of $s = ut + \frac{1}{2} at^2$ Derivation $v^2 = u^2 + 2as$	1/2 1/2 1/2 1
15.	Vertical $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
16.	pulling is easier than pushing Free body diagram	

	OR	1
	$\therefore \cos \theta = \frac{1}{15} \text{or} \theta = 45^{\circ}$	1 1 1
	For the equilibrioum of mass $\sqrt{2} m$, $\sqrt{2} mg = 2T \cos \theta = 2mg \cos \theta$	
	For the equilibrium of mass m , $mg = T$	
	√2 mg	1
		1
22.	τ	1
	$A^2 - B^2 = 0$ $A = B$	1/2
	$\underset{A}{\xrightarrow{A}} \xrightarrow{A} \xrightarrow{A} \xrightarrow{B} \xrightarrow{B} \xrightarrow{A} \xrightarrow{B} \xrightarrow{A} \xrightarrow{B} \xrightarrow{B} = 0$	1
	$(ii)\left(\frac{1}{A} + \frac{1}{B}\right) \cdot \left(\frac{1}{A} - \frac{1}{B}\right) = 0$	1/2
21.	(i) Statement of parallelogram law of vector addition.	1
	(iii) Yes, when two bodies move in opposite directions	1/2 ,1/2
	(ii) Yes, in uniform circular motion	1/2 ,1/2
20.	i) Not necessarily, if velocity increases, acceleration acts in direction of velocity and velocity decreases, then acceleration acts in opposite direction of velocity	1/2 ,1/2
	$S_{nth} = u + \frac{a}{2} (2n-1)$	
19.	Derivation - distance travelled by a body in the nth second is	3
	(ii) Definition dimensional constant and example.(iii) Distinguish between accuracy and precision.	1 1
18.	(i) Definition of principle of homogeneity.	1
17.	(i) Newton's first law of motion from Newton's second law of motion. (ii) Newton's third law of motion from Newton's second law of motion.	1 2
17.	Newton's second law of motion is real law of motion.	1
	Two equations Explanation with help of equations	1/2 ,1/2 1/2 ,1/2

	-V-90	
	$T_1 \sin 60^\circ = 4 \text{ kg wt} = 4 \times 9.8 \text{ N}$ (i)	
	$T_1 \sin 60^{\circ}$ T_1 $T_1 \cos 60^{\circ} = T_2$ (ii)	
	T ₂ 60° From (i),	
	$T_1 \cos 60^\circ$ $T_1 = \frac{4 \times 9.8}{3.000} = \frac{4 \times 9.8 \times 2}{5.000} = 45.26 \text{ N}$	
	sin 60° √3	
	From (ii), $T_2 = T_1 \cos 60^\circ = 45.26 \times 0.5 = 22.63 \text{ N}$	
	4 kg wt $I_2 = I_1 \cos 60^{\circ} = 45.26 \times 0.5 = 22.65 \text{ N}$	
23.	Definition of angle of repose.	1
	Relation with coefficient of static friction- FBD	
	Relation	
		1
24.	(i) Definition of concurrent forces?	1
	(ii) Condition for translation equilibrium.	1
	(iii) Condition for the equilibrium of three concurrent forces.	1
	SECTION-D	
25.	(i) Statement of law of conservation of linear momentum	1
	Verification of law	2
	$(ii) \Delta p_x = -2p\cos 45^0$	1
	$\Delta p_y = 0$ $\Delta p = -2 \cdot 5 \cdot 1/\sqrt{2} = 7.1 \text{ kgm/s}$	1/ ₂ 1/ ₂
	OR	/2
	(i)) Definition of the coefficient of static friction.	
	Expression for the acceleration of a body sliding down a rough inclined plane-	1
	Free body diagram	1
	Derivation of formula	1
	(ii) $F = n \times m(v-u)/t$	1/2
	Substitution of all n = 3 bullets per second	
	n = 3 bunets per second	11/2
26.	(i) Projectile path a parabolic path-	1
	Diagram with full representation of all velocity vectors	
	Derivation	2
	(ii) $t = \sqrt{\frac{2h}{g}} = 10 s$	
	$x = 98 \times 10 = 980m$	1
		1
	OR	

	(i) Definition of centripetal acceleration	1
	Expression of centripetal acceleration:	1
	Two diagrams: (a) position –vector diagram (b) velocity – vector diagram	
	Derivation of formula	1/2 ,1/2
	(ii) $\omega = 2\pi n = 2x 22/7 \times 7/100 = 0.44 \text{ rad/s}$	1
	$V = r \omega = 12 \times 0.44 = 5.28 \text{ cm/s}$	1
		1
27.	(i) How is random error eliminated :	1
	Definition of (a) absolute error (b) mean absolute error (c) relative error and (d) percentage	1/2 ,1/2 1/2 ,1/2
	error	
	(ii) $v = 4/3 \pi r^3$	1
	$= 4/3 \times 3.14 \times (1.41)^3 \text{ cm}^3 = 11.736 \text{ cm}^3$	1
	= 11.7 cm ³ (rounded off upto 3 SF)	1
	OR	
	(i) Meaning of parallax and parallactic angle?	1/2 ,1/2
	Measurement the distance of moon by parallax method:	1
	Diagram	1
	Measurement	1
	(ii) Angular diameter $\theta = 1920^{\circ} = 1920 \times 4.85 \times 10^{-6} \text{ rad}$	
	Linear diameter of the sun $D = S \times \theta = 1.5 \times 10^{11} \times 1920 \times 4.85 \times 10^{-6} = 1.4 \times 10^{9} \text{ m}$	1